

pyblake2 — BLAKE2 hash function for Python

pyblake2 is an extension module for Python implementing BLAKE2 hash function.

BLAKE2 [https://blake2.net] is a cryptographic hash function, which offers highest security while
being as fast as MD5 or SHA-1, and comes in two flavors:

	BLAKE2b, optimized for 64-bit platforms and produces digests of any size
between 1 and 64 bytes,

	BLAKE2s, optimized for 8- to 32-bit platforms and produces digests of any
size between 1 and 32 bytes.

BLAKE2 supports keyed mode (a faster and simpler replacement for HMAC [http://en.wikipedia.org/wiki/Hash-based_message_authentication_code]),
salted hashing, personalization, and tree hashing.

Hash objects from this module follow the API of standard library’s
hashlib [https://docs.python.org/3.3/library/hashlib.html#module-hashlib] objects.

Contents:

	Module
	Creating hash objects

	Using hash objects

	Constants

	Examples
	Simple hashing

	Using different digest sizes

	Keyed hashing

	Randomized hashing

	Personalization

	Tree mode

	Installation
	Download

	Development

	Version history

	Credits

Module

Creating hash objects

New hash objects are created by calling constructor functions:

	
pyblake2.blake2b(data=b'', digest_size=64, key=b'', salt=b'', person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, node_depth=0, inner_size=0, last_node=False)

	

	
pyblake2.blake2s(data=b'', digest_size=32, key=b'', salt=b'', person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, node_depth=0, inner_size=0, last_node=False)

	

These functions return the corresponding hash objects for calculating
BLAKE2b or BLAKE2s. They optionally take these general parameters:

	data: initial chunk of data to hash, which must be interpretable as buffer
of bytes.

	digest_size: size of output digest in bytes.

	key: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for
BLAKE2s).

	salt: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8
bytes for BLAKE2s).

	person: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes
for BLAKE2s).

The following table shows limits for general parameters (in bytes):

	Hash
	digest_size
	len(key)
	len(salt)
	len(person)

	BLAKE2b
	64
	64
	16
	16

	BLAKE2s
	32
	32
	8
	8

Note

BLAKE2 specification defines constant lengths for salt and personalization
parameters, however, for convenience, this implementation accepts byte
strings of any size up to the specified length. If the length of the
parameter is less than specified, it is padded with zeros, thus, for
example, b'salt' and b'salt\x00' is the same value. (This is not
the case for key.)

These sizes are available as module constants described below.

Constructor functions also accept the following tree hashing parameters:

	fanout: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).

	depth: maximal depth of tree (1 to 255, 255 if unlimited, 1 in
sequential mode).

	leaf_size: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in
sequential mode).

	node_offset: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for
BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).

	node_depth: node depth (0 to 255, 0 for leaves, or in sequential mode).

	inner_size: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for
BLAKE2s, 0 in sequential mode).

	last_node: boolean indicating whether the processed node is the last
one (False for sequential mode).

[image: Explanation of tree mode parameters.]

See section 2.10 in BLAKE2 specification [https://blake2.net/blake2_20130129.pdf] for comprehensive review of tree
hashing.

Using hash objects

Hash objects have the following attributes and methods:

	
hash.digest_size

	

The size of the resulting digest in bytes. This is the value given to hash
object constructor in digest_size argument.

	
hash.block_size

	

The internal block size of the hash algorithm in bytes.

	
hash.update(arg)

	

Update the hash object with the object, which must be interpretable as buffer
of bytes

Note

For better multithreading performance, the Python GIL is released for data
larger than 2047 bytes at hash object creation or on update to allow other
threads to run.

	
hash.digest()

	

Return the digest of the data so far.

	
hash.hexdigest()

	

Like digest() except the digest is returned as a string of double
length, containing only hexadecimal digits.

	
hash.copy()

	

Return a copy of the hash object.

Constants

	
pyblake2.BLAKE2B_SALT_SIZE

	

	
pyblake2.BLAKE2S_SALT_SIZE

	

Salt length (maximum length accepted by constructors).

	
pyblake2.BLAKE2B_PERSON_SIZE

	

	
pyblake2.BLAKE2S_PERSON_SIZE

	

Personalization string length (maximum length accepted by constructors).

	
pyblake2.BLAKE2B_MAX_KEY_SIZE

	

	
pyblake2.BLAKE2S_MAX_KEY_SIZE

	

Maximum key size.

	
pyblake2.BLAKE2B_MAX_DIGEST_SIZE

	

	
pyblake2.BLAKE2S_MAX_DIGEST_SIZE

	

Maximum digest size that the hash function can output.

Examples

Simple hashing

To calculate hash of some data, you should first construct a hash object by
calling the appropriate constructor function (blake2b() or
blake2s()), then update it with the data by calling update() on the
object, and, finally, get the digest out of the object by calling
digest() (or hexdigest() for hex-encoded string).

>>> from pyblake2 import blake2b
>>> h = blake2b()
>>> h.update(b'Hello world')
>>> h.hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

As a shortcut, you can pass the first chunk of data to update directly to the
constructor as the first argument (or as data keyword argument):

>>> from pyblake2 import blake2b
>>> blake2b(b'Hello world').hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

You can call hash.update() as many times as you need to iteratively
update the hash:

>>> from pyblake2 import blake2b
>>> items = [b'Hello', b' ', b'world']
>>> h = blake2b()
>>> for item in items:
... h.update(item)
>>> h.hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'

Using different digest sizes

BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32
bytes for BLAKE2s. For example, to replace SHA-1 with BLAKE2b without changing
the size of output, we can tell BLAKE2b to produce 20-byte digests:

>>> from pyblake2 import blake2b
>>> h = blake2b(digest_size=20)
>>> h.update(b'Replacing SHA1 with the more secure function')
>>> h.hexdigest()
'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
>>> h.digest_size
20
>>> len(h.digest())
20

Hash objects with different digest sizes have completely different outputs
(shorter hashes are not prefixes of longer hashes); BLAKE2b and BLAKE2s
produce different outputs even if the output length is the same:

>>> from pyblake2 import blake2b, blake2s
>>> blake2b(digest_size=10).hexdigest()
'6fa1d8fcfd719046d762'
>>> blake2b(digest_size=11).hexdigest()
'eb6ec15daf9546254f0809'
>>> blake2s(digest_size=10).hexdigest()
'1bf21a98c78a1c376ae9'
>>> blake2s(digest_size=11).hexdigest()
'567004bf96e4a25773ebf4'

Keyed hashing

Keyed hashing can be used for authentication as a faster and simpler
replacement for Hash-based message authentication code [http://en.wikipedia.org/wiki/Hash-based_message_authentication_code] (HMAC).
BLAKE2 can be securely used in prefix-MAC mode thanks to the
indifferentiability property inherited from BLAKE.

This example shows how to get a (hex-encoded) 128-bit authentication code for
message b'message data' with key b'pseudorandom key':

>>> from pyblake2 import blake2b
>>> h = blake2b(key=b'pseudorandom key', digest_size=16)
>>> h.update(b'message data')
>>> h.hexdigest()
'3d363ff7401e02026f4a4687d4863ced'

As a practical example, a web application can symmetrically sign cookies sent
to users and later verify them to make sure they weren’t tampered with:

>>> from pyblake2 import blake2b
>>>
>>> SECRET_KEY = b'pseudorandomly generated server secret key'
>>> AUTH_SIZE = 16
>>>
>>> def sign(cookie):
... h = blake2b(data=cookie, digest_size=AUTH_SIZE, key=SECRET_KEY)
... return h.hexdigest()
>>>
>>> def verify(cookie, sig):
... good_sig = sign(cookie)
... if len(sig) != len(good_sig):
... return False
... # Use constant-time comparison to avoid timing attacks.
... result = 0
... for x, y in zip(sig, good_sig):
... result |= ord(x) ^ ord(y)
... return result == 0
>>>
>>> cookie = b'user:vatrogasac'
>>> sig = sign(cookie)
>>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
user:vatrogasac,349cf904533767ed2d755279a8df84d0
>>> verify(cookie, sig)
True
>>> verify(b'user:policajac', sig)
False
>>> verify(cookie, '0102030405060708090a0b0c0d0e0f00')
False

Even though there’s a native keyed hashing mode, BLAKE2 can, of course, be used
in HMAC construction with hmac [https://docs.python.org/3.3/library/hmac.html#module-hmac] module from the standard library:

>>> import hmac, pyblake2
>>> m = hmac.new(b'secret key', digestmod=pyblake2.blake2s)
>>> m.update(b'message')
>>> m.hexdigest()
'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'

Randomized hashing

By setting salt parameter users can introduce randomization to the hash
function. Randomized hashing is useful for protecting against collision attacks
on the hash function used in digital signatures.

Randomized hashing is designed for situations where one party, the message
preparer, generates all or part of a message to be signed by a second
party, the message signer. If the message preparer is able to find
cryptographic hash function collisions (i.e., two messages producing the
same hash value), then she might prepare meaningful versions of the message
that would produce the same hash value and digital signature, but with
different results (e.g., transferring $1,000,000 to an account, rather than
$10). Cryptographic hash functions have been designed with collision
resistance as a major goal, but the current concentration on attacking
cryptographic hash functions may result in a given cryptographic hash
function providing less collision resistance than expected. Randomized
hashing offers the signer additional protection by reducing the likelihood
that a preparer can generate two or more messages that ultimately yield the
same hash value during the digital signature generation process – even if
it is practical to find collisions for the hash function. However, the use
of randomized hashing may reduce the amount of security provided by a
digital signature when all portions of the message are prepared
by the signer.

(NIST SP-800-106 “Randomized Hashing for Digital Signatures” [http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf])

In BLAKE2 the salt is processed as a one-time input to the hash function during
initialization, rather than as an input to each compression function.

Warning

Salted hashing (or just hashing) with BLAKE2 or any other general-purpose
cryptographic hash function, such as SHA-256, is not suitable for hashing
passwords. See BLAKE2 FAQ [https://blake2.net/#qa] for more
information.

>>> import os
>>> from pyblake2 import blake2b, BLAKE2B_SALT_SIZE
>>> msg = b'some message'
>>> # Calculate the first hash with a random salt.
>>> salt1 = os.urandom(BLAKE2B_SALT_SIZE)
>>> h1 = blake2b(salt=salt1)
>>> h1.update(msg)
>>> # Calculate the second hash with a different random salt.
>>> salt2 = os.urandom(BLAKE2B_SALT_SIZE)
>>> h2 = blake2b(salt=salt2)
>>> h2.update(msg)
>>> # The digests are different.
>>> h1.digest() != h2.digest()
True

Personalization

Sometimes it is useful to force hash function to produce different digests for
the same input for different purposes. Quoting the authors of the Skein hash
function:

We recommend that all application designers seriously consider doing this;
we have seen many protocols where a hash that is computed in one part of
the protocol can be used in an entirely different part because two hash
computations were done on similar or related data, and the attacker can
force the application to make the hash inputs the same. Personalizing each
hash function used in the protocol summarily stops this type of attack.

(The Skein Hash Function Family [http://www.skein-hash.info/sites/default/files/skein1.3.pdf],
p. 21)

BLAKE2 can be personalized by passing bytes to the person argument:

>>> from pyblake2 import blake2b
>>> FILES_HASH_PERSON = b'MyApp Files Hash'
>>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
>>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
>>> h.update(b'the same content')
>>> h.hexdigest()
'20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
>>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
>>> h.update(b'the same content')
>>> h.hexdigest()
'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'

Personalization together with the keyed mode can also be used to derive different
keys from a single one.

>>> from pyblake2 import blake2s
>>> from base64 import b64decode, b64encode
>>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
>>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
>>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
>>> print(b64encode(enc_key).decode('utf-8'))
rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
>>> print(b64encode(mac_key).decode('utf-8'))
G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=

Tree mode

Here’s an example of hashing a minimal tree with two leaf nodes:

 10
 / \
00 01

The example uses 64-byte internal digests, and returns the 32-byte final
digest.

>>> from pyblake2 import blake2b
>>>
>>> FANOUT = 2
>>> DEPTH = 2
>>> LEAF_SIZE = 4096
>>> INNER_SIZE = 64
>>>
>>> buf = bytearray(6000)
>>>
>>> # Left leaf
... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
... node_offset=0, node_depth=0, last_node=False)
>>> # Right leaf
... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
... node_offset=1, node_depth=0, last_node=True)
>>> # Root node
... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
... node_offset=0, node_depth=1, last_node=True)
>>> h10.update(h00.digest())
>>> h10.update(h01.digest())
>>> h10.hexdigest()
'3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'

Installation

pyblake2 works with Python 2.6, 2.7 and 3.x.

You can install it from PyPi using pip [https://pypi.python.org/pypi/pip]:

$ pip install pyblake2

or download sources and run:

$ python setup.py install

Download

See list of files here:

https://pypi.python.org/pypi/pyblake2

Development

Git repository: https://github.com/dchest/pyblake2

When submitting pull requests, please include public domain dedication / CC0
header text as written in the Credits topic into the text of your pull
request, including your full legal name. (We cannot accept changes if you are
not willing to place them into the public domain.)

Version history

0.9.3:

	Build SSE2 implementation on x86_64 architectures by default.

0.9.2:

	Made tests compatible with Python 2.6 and 3.2.

	Made examples from documentation compatible with Python 3.

	Removed compiled documentation from source distribution.

0.9.1:

	Fixed Windows build.

0.9.0:

	First release.

Credits

BLAKE2 [https://blake2.net] was designed by Jean-Philippe Aumasson, Samuel Neves, Zooko
Wilcox-O’Hearn, and Christian Winnerlein based on SHA-3 [http://en.wikipedia.org/wiki/NIST_hash_function_competition] finalist BLAKE [https://131002.net/blake/]
created by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and
Raphael C.-W. Phan.

It uses core algorithm from ChaCha [http://cr.yp.to/chacha.html] cipher designed by Daniel J. Bernstein.

Python extension module was written by Dmitry Chestnykh based on C
implementation written by Samuel Neves.

The following public domain dedication applies for both C hash function
implementation, extension code, and this documentation:

To the extent possible under law, the author(s) have dedicated all copyright
and related and neighboring rights to this software to the public domain
worldwide. This software is distributed without any warranty.

You should have received a copy of the CC0 Public Domain Dedication along
with this software. If not, see
http://creativecommons.org/publicdomain/zero/1.0/.

The following people have helped with development or contributed their changes
to the project and the public domain according to the Creative Commons Public
Domain Dedication 1.0 Universal:

	Alexandr Sokolovskiy

See also

Official BLAKE2 website: https://blake2.net

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyblake2	

Index

 B
 | C
 | D
 | H
 | P
 | U

B

 	
 	blake2b() (in module pyblake2)

 	BLAKE2B_MAX_DIGEST_SIZE (in module pyblake2)

 	BLAKE2B_MAX_KEY_SIZE (in module pyblake2)

 	BLAKE2B_PERSON_SIZE (in module pyblake2)

 	BLAKE2B_SALT_SIZE (in module pyblake2)

 	
 	blake2s() (in module pyblake2)

 	BLAKE2S_MAX_DIGEST_SIZE (in module pyblake2)

 	BLAKE2S_MAX_KEY_SIZE (in module pyblake2)

 	BLAKE2S_PERSON_SIZE (in module pyblake2)

 	BLAKE2S_SALT_SIZE (in module pyblake2)

C

 	
 	copy() (pyblake2.hash method)

D

 	
 	digest() (pyblake2.hash method)

H

 	
 	hash.block_size (in module pyblake2)

 	
 	hash.digest_size (in module pyblake2)

 	hexdigest() (pyblake2.hash method)

P

 	
 	pyblake2 (module), [1]

U

 	
 	update() (pyblake2.hash method)

 _static/comment.png

nav.xhtml

 Table of Contents

 		pyblake2 — BLAKE2 hash function for Python

 		Module

 		Creating hash objects

 		Using hash objects

 		Constants

 		Examples

 		Simple hashing

 		Using different digest sizes

 		Keyed hashing

 		Randomized hashing

 		Personalization

 		Tree mode

 		Installation

 		Download

 		Development

 		Version history

 		Credits

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_images/tree.png

_static/comment-close.png

